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SECTION 1

INTRODUCTION TO EQUATIONS OF MOTICN FOR CONTROLLED
SPINNING PROJECTILES

The notations and ccnventions which have been adopted are
consistent with old NACA practice, with the report by Charters,
reference [1] , and with the monograph by Jones, reference [2].

Newton's laws for describing the motion of rigid bodies state
that the sum of all external forces acting on a body equals the time
rate of change of momentum, and the sum of the moments of forces
equals the time rate of change of moment of momentum.

IF = %— (ml)
? (1-1)
- d
M —— (ﬁ)
dt J

All quantities in equationg (1l-1) are specified relative to axes fixed .

in space. Consequently, the six component equations of motion repre-
sented by the vector expressions of equations (l-1) are too unwieldy
for practical use, since the moments of forces and the body inertia
matrix would vary with time with respect to an inertial (fixed) axis
system. The difficulty is overcome by referring all qyantities to an
Eulerian or moving axis system which is coincident with a set of

axes fixed on the body. The formulation in terms of moving axes is
made by recalling that:

_d g
dt o + Ox

fixed axes moving axes

which permits equations (1-1) to be written as

L]
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tF = —Qé%gl— + [x(mU0)

> (1-2)

IH = —Qé%l— + TOx(H)

Equations (1-2) describe body motion in terms of linear momentum
and moments of momentum referred to the moving coordinate, and Q,
the angular velocity vector of the moving frame relative to inertial
(fixed) space,

The force components and the moment components are resolved onto
a coordinate frame which is associated with the projectile.

There are a number of coordinate frames which are useful in the
analysis of controlled spinning projectiles. These will be intro-
duced at this time, even though most of them will not be used until
much later. The justification for introducing them here is that
most of this notational complexity is caused by the multiplicity of
coordinate frames.

Each coordinate frame is a right-handed coordiqate frame with
origin O, and three mutually orthogonal axes which are designated
the x-axis, y-axis, and z-axis, respectively. A right-handed
coordinate frame is one in which the conventions for positive
rotations have been coordinated with the positive direction of the
axes so that a right-handed screw, pointed in the positive direction
of an axis will advance in a positive direction when rotated in a
clockwise sense, as seen looking in the positive direction. A right-
handed frame is shown in Figure (1-1).

+

1-2
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Figure (1-1). A Right-Handed Coordinate Frame

The following coordinate frames will be useful.

x° y° z° an inertial coordinate frame

xF yF zF‘ a coordinate frame fixed to the cruciform canards

x'y' x! a coordinate frame fixed in the body of the projectile

x"y" 2" a stabilized coordinate frame which moves with the
projectile

xT yT zT a coordinate frame which 1s fixed in the target

X y z an aeroballistic coordinate frame
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Several vectors

frames as follows:

B = ix
T = iu
A = dia
T o= ip
T o= ip
F = 14X
M = iL

where i, j, and k are unit vectors in the x, vy,

respectively.

+ Jjy +

+ +
[ S
2 w
+ +

will be resolved onto the several coordinate

kz

kw ;

ke

kr
kr ;

kZ

kKN ;

position

velocity

translational acceleration
angular velocity

angular acceleration

force

moment

? (1-3)

2 directions,

The equations of motion of a rigid body have been given by
Jones. The equations are expressed with respect to a moving coordinate
frame whose origin coincides with the éenter of gravity of the rigid
body. The equations will be written initially with respect to an
unprimed coordinate frame and the semantics of the equations will

tighten up in the discussion which ensues.

h2 - hap + nlr -

Te

- har + h

m[ﬁ - vr + wq] = X + X )

m[G - wp

m[w - uq

3 - Bja * hyp =

3q ®

+ur] =Y + Y

+ vp] =2+ Z

L Iy VUV AV U T S

G

G > Force Equations

~

Moment Equations

1-4

The equations are:

(1-4)

(1-3)
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'_"V_fTv-

h, = Ap - Fq - Er N

1

hea = By - Dr - Fp > Angular Momentum Equations (1-8)

“

hs = Cr - Ep - Dg

where

are components of a force vector due ]
to gravity o

o) By are components of an angular momentum vector

A,B,C,D,E,F are components of an inertial temsor, and

A, B, C are moments of inertia

D, E, F are products of inertia

The application of equations (1-4), (1-5), and (1-8) imposes
certain practical constraints. First, it is desirable to choose the
coordinate frame so that the components of the inertial tensor (A, B,
C, D, E, F) are constant. This can be accomplished for a projectile
of constant mass by causing the coordinate frame ¢o be fixed in the
body of the projectile. This is the primed coordinate frame x', y¥',
x')., VWriting equation (1-4) relative to the Hrimed coordinate frame,
gives

,
L A el a e e Cendh y &

mfu' - v'r' + wq'] =X + X§ h
Force Equations
Relative to (1-7)

m{v' - w'p' +u'r'] =¥ + ¥
Body Frame

m(w' - u'q" + v'p'] =2 + Z5 J

1-5




The angular momentum equations, (1-6), become

ng ] = a -rr -8} [p
_ ho -F' B' -D' q' (1-8)
| hy -E' ~D' C'| |r

where the coefficients A'. B', C', D', E', F' are constants.
Differentiating (1-8) gives

By | =| A" -F' -E' p'
by -F' B' D' Q! (1-9)
». hy ' -p* ¢'| |z
. Let thne matrix be inverted so that
E - A -F! =E' : E'l - A =F! =E' -1
~F' B' -D!' -F! B' =D' (1-10)
-E' =D' c -E' -D! c'
Then,
’
% & o=(e| = e |& ‘
q' By (1-11) ]
i P By ]
* 1
1

1-6
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Combining (1-11) and (1-5)

b - -1 [ - 1

p E L' + hér' héq

q' M' o+ hép' - hir' (1-12)
i.v N' + hvlqv - hép'

Introducing the notation

a' = X'/m

b' = Y'/m (1-13)
¢' = Z'/m

The equations are:
Q' = oy'r' - w'q' + a' + (Xé/m)

V' m w'p' - u'r' +b' + (Yg/m) (1-14)

&v - u|q| - V'p' + ¢! (Zé/m)

' - ' Yyt 1!
p E L' + hyr haq
q' M' + hip' - hir' (1-15)
L?'- _N' + hjq' - hép'J

Equations (1-13), (1-14), and (1-15) are the most general nonlinear
equations of motion which will be considered.

Second, this most general case can be constrained by imposing a
rotational symmetry about the x' axis. The full significance of this

o .. e A a

—




symmetry can best be implied in terms of the inertial coefficients.
| The inertial coefficients are defined as follows (see reference (3],

! p. 139). Al = -Zky'z + z'2)pd1 w
c' = J[(x'z + 3" %) odr
D' = J[§'z' pdTt
' = fz'x' pdT

F' = _l;‘y' pdrt J

(1-16)

Where p = density

dt = volume increment

Let the x',y',2' axesufthe primed coordinate frame) be aligned
initially to coincide with the x,y,z axes. Then, let the x' axis
and the x axis remain coincident while the primed coordinate frame is
spun about the coincident axes. The inertial components about the
unprimed axes will generally not be constant. However, they will i
be constant provided the coincident spin axes; i.e.,x' axis and ﬁ
X axis, are axes of summetry. Under these conditions "

-

A 1s constant
B=C ’ (1-17)

D= E=TFm=0

When these axial symmetry conditions are satisfied, the equations of
motion can be written in the following form:

U= vr - wq + a + (XG/m)
V=wp-ur+b+ (Y./m) (1-18) L

W=ug - vp + ¢ + (Zg/m)

1-8




H

h, = Ap’

1
h, = Bq (1-19)
h3 = Br

p' = (L/A)

q = (M + hgp = hyr)/B (1-20)
P -

(N + hyq = h,p)/B

Note that the angular momentum component (hl) depends on the spin rate
of the body (p') and is independent of the spin rate of the unprimed
coordinate frame (p).

The usefulness of equations (1-18) through (1-20) depends on
whether the force components (X, Y, Z) and the moment components
(L, M, N) can be expressed conveniently in the unprimed coordinate
frame. They can be and the manner of doiag so0 has been described -

by Charters (1], pp. 27-33. According to Charters: '

"... It may be concluded, therefore, that the aero-
dynamic coefficients are invarient with respect to
rotation of coordinate axes about the axis of
symmetry. Consequently, the y and z axes may be
oriented at will around the x axis, without regard

to the orientation of the missile about x, since the
aerodynamic coefficients are solely functions of the
missile's external shape (and such non-dimensional para-
meters as Reynolds and Mach numbers) and it has been
shown that the aerodynamic coefficients do not change
with orientation of the missile in roll. 1In fact,
the missile may be allowed to spin about the x axis
with respect to the y,z axes and the aserodynamic co-
efficients will be unaffected."

1-9
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Charters defines three sets of coordinate axes. One set, which
he calls '"earth axes' correspond to the inertial coordinate frame,
xo, yo, z°, A set, which he calls body axes, corresponds to our
coordinate frame fixed in the body, x', y', 2z'. A set, which he calls
"pseudo-stability axes' corresponds thus far to the as yet unnamed
unprimed coordinate frame, X, y, 2. Charters points out that the
pseudo-stability axes may be oriented at wilil about the axis of -

rotational symmetry. The pseudo-stability axes are commonly referred
to as aeroballistic axes,

It should be pointed out that Charters pseudo-stability axes
are not associated witih a physical body. Thus, the magnitude of the
angular velocity about the X axis can be specified arbitrarily and
does not have to satisfy an equation of dynamic equilibrium.

A coordinate frame will be associated with the canard assembly,
or fin-frame, of a controlled spinning projectile. This will

require an equation of dynamic equilibrium which is introduced in the .
following paragraphs. : .on

The geometrical relationship between the primed and unprimed
coordinate frames is the saume whether or not the unprimed frame is
physical. This relationship is shown in Figure (1-2).

One useful treatment of the unprimed coordinate frame is to
set its spin rate (p) equal to zero, The motion of the projectile

is then described relative to a non-spinning coordinate frame and the
equations are

u = vr - uq + a + (xG/m)
vV = -ur + b + (Y/m) (1-21)
w o=

uqg + ¢ + (ZG/m)




(1) The primed coordinate
frame is fixed in the
body.

X = x°! (2) The origins are co-
incident.

(3) The Ox and Ox' axes
are coincident.

O
[ ]

p' - p

¢ = 4(0) +of'°(p'-p)dt

ip a = aé

b= bé cosd = cé sing

- ' 1
c b° sing + co coso

q=q'cosd -~ r'sing :
r=q'sing + r'cos¢ !

]

Figure 1-2. The Relationship hetween the Primed and Unprimed
Coordinate Frames

1-11




p = 0 h

pé = L/A s
q = (M-~ Ap'r)/B (1-22)
r = (N + Ap'q)/B

s

In order to associate i1he unprimed coordinate frame with the
aeroballistic frame, first the spin angular momentum is defined as

hl = ABpé + AFpF (1-23)

It is assumed that the fin-frame will have axial symmetry, Just as the
body does, and that its products of inertim are zero. Egquating the

rate-of-change of the spin momentum to a total rolling moment,

However, another physical variable is required and this is the torque,
T, between the body frame and the fin-frame. Let

Appp = Lp *+ T
(1-25)

where
LF = gerodynamic moment applied to the fin-frame

LB = aerodynamic moment applied to the body-frame.
It canbie seen that equations (1-25) satisfy equation (1-24), provided that

. L = Lp+ Ly (1-28)

1-12
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The equations which have been develcped here are summarized in
Table 1. Three sets of equations have been identified:

(1) Six degrees-of-freedom expressed in body axes

(2) 8Six degrees-of-freedom expressed in aeroballistic
(pseudo-stablility) axes

(3) Seven degrees-of-freedom expressed in aeroballistic axes

The first set is most general but it presents a number of algebraic
and computational difficulties. The second set introduces the
constraint of axial symmetry and a number of approximations which
are convention for aeroballistics. However, it does not include an
explicit description of the stabllized and contrcllable fin-frame,
This second set has been included here in order to show a relationship
to conventional aeroballistic theory. The third set of equations
introduces a seventh degree-of-freedom: the spin of the fin-frame
independent of the body. This seven degree-~cf-freedom model will be
the basis for most of the theoretical design considerations for
controlled spinning projectiles. '

1-13
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SECTION 2
COORDINATE TRANSFORMATIONS

Three dimensional Cartiesian vectors transform according to the

scheme. -

- - o"'
(o}
v 21 C22  C23 v
(o)
w c L} c w
o 31 32 33_ L
The inverse transformation is:
r - — r —
o] '
.0
v €12 C22 Ca32 v
0
L“’ Lcla €23 Cas _""

and the transpose of the matrix is also its inverse. The matrix
elements, °ij' are called '"direction cosines'" and are capable of
physical interpretation.

The properties of these coordinate tranaformations are most
familiar to engineers in terms of Euler angles (gimbal angles).
Such a presentation is given in Charters [1l], and none will be
repeated here. A less famillar treatment of the coordinate trans-
formations in terms of the components of a rotation vector is given
in Webster [4] and will be discussed here,

The rates-of-change of the direction cosines depend on the
present values of the direction cosines and components of angular
velocity. The complete relationships are:




€13 ™ Cg3F ~ c33a
Cgy ® ©C31P = C117
Cop ™ CggP = Cj2T > (2-3)

Cgg ™ ©CggP = €337

€119 = Cg1P
Czp ™ €129 = CgoP
Gz ™ €139 = Cg3P

J
Each rate-~of-change must be integrated:

gy ™ ©44€0) * dft éid dt (2=4)

The physical significance of the direction cosines can be
demonstrated as follows, Consider a unit vector in the direction
of the x°-axis. It can be expressed as & column vector:

o

X - 1
y° 0 (2-5)
z° 0

This vector will transform onto the unprimed coordinate frame in
accordance with equation (2-1).

2-2




mY

v oy -

(2-8)
z 31 %32 C33| |0 3q

Thus, €41 is the cusine of the angle hetween the x°-axis and the x-
axis; Coq the cosine of the angle between the xo-axis and the y-axis;
and ¢4, is the cosine of the angle between the x°-axis and z-axis.

The argument can be repeated using vectors

x° - 0 = a unit vector along the yo-axis
y° 1
e}
N .P_
x°| = OT = a unit vector along the z°-axis
y° 0
z° 1
el -

in order to interpret the significance of the remaining cid'

We have chosen a mnemonic notation for the vector components
because we have found that it facilitates learning and remembering
the notation. However, there 1s some merit in a pure index notation
and such a notation will facilitate the present discussion.

The equivalence of a mnemonic notation and an index notation for
a right-handed coordinate frame is shown in Figure (2-1). The axis
are assocated with the indices 1, 2, and 3 and the same symbol is
employed for each axis or for each vector component. The same
symbols are employed for each unit vector and the unit vectors are
distinguished from one another by the numerical indices.
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R e ix + jy + kz

T = ip + jq + kr

(iJk are unit vectors)

MNEMONIC NOTATION

X = xlel +* xze2 + xsea
G Wi€y * WoEy *+ Wakyq

(eleze3 are unit vectors)

INDEX NOTATION

Figure (2~1). Equivalence of Mnemonic Notation and Index Notation

for a Right-Handed
2-4
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n The rates-of-change of the directinon cosines can be expressed _
in the index notation:
: 11 = Ca1%3 - C31Y2 7
P iz ™ Cag¥3 - Caglp )
' 13 = Ca3¥3 - Cazvp
|
E Cgp = CgyWp = C13¥y
Caz T CagWp - Cpg¥y ’
» S33 = Cagz¥z = °1391 (2-7)
= .
%" €31 ¥ C11¥%2 T C21Y1
3z ™ Cig¥p -~ Cag¥y -
Ei S33 = C1a¥p = Cag¥y ) |

Thus, the general expression is: 1

H ki ™ Cke1,1%-1 T %k-1,1Y%+1 (2-8)
4
! where k+1 and k-1 are to be evaluated with respect to the following ’ }
truth table
k k+1 k-1
1 2 3 1
2 | 3 1 1
3 1 2

The physical basis for equations (2-3) or (2-7) can be demonstrated
by considering small rotations instead of rates-of-change. That is :

ata
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fvw,, .

s = foar = fude

¢ = Jaat = fujat (2-9)
v o= _rrdt = Imadt
The effect of these small rotations is to change the projections of

a unit vector in the inertial frame, x? = 1, on the axes of the un-
primed frame. The effect of these changes is depicted in Figure 2-2.

-

The Unprimed Frame Rotates Through Small Angles ¢,8,y. L

Figure 2-2. Physical Basis for the Change in Direction
Cosines Caused by Small Rotations.
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and their magnitude can be written by inspection,

Aclj =‘C2Jw - CSje
ACZJ = C33¢ - Cljw
ACSJ - clde - C23¢

W

7/

Thus

(2-10)

The several vectors described in Equations 1-3 can be transformed

from one coordinate frame to another according to the following

: U =CT°

;ﬁn .Dc

schemes:
wans o]
u 811 212 213 | (Y
T (o}
Ve |®| 8g1 B33 Bpg |V
T (o}
w a a 2 w
A ¥ ] [®s1 %32 ‘33| ¥ _
~ = m
(o]
u' b11 b12 bléj u
(o]
v' |®*| Pgyq Pgg baa ||V
(o]
"' | [Ps1 Pa2 P33 |¥ |
pase = ﬂ
El €11 12 °1§1 u®
V. ™! C21 S22 €23 v°
Q
" ] |°s1 ®32 %33 || ¥ |
u" dyj dyp d45 || U
A dgy dgg dgz ||V
7] 931 432 a3 || ¥ |
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(2-12)

(2-13)

(2-14)




SECTION 3
THE SEVEN DEGREE-OF-FREEDOM MODEL -

The seven degree-of-freedom model for a controlled spinning
projectile has been derived in Section 1. However, it will be helpful 4
to restate the egquations here: ;

=Y

——

'

wth.

a=X/m
- Accelerometer -
b ¥/m Equations (3-1)
c = Z/m
U™ vVvr -wg+a + (Xg/m) ﬂ
. Force i
Ve -ur +b + (YG/m) Equalibruim (3-2) }
. Equations 1
w=uq +c + (2g/m) )
h, = Anpl: + App R
hy = Bq Momentum (3-3)
Equations ‘i
ha = Br
\
B
b = (g = Ty f
. Moment '
Pp = (Ly + T)/Ap Equilibrium (3-4)
q = (M - hyr)/B Equatiqns
f = (N + hyq)/B !

These equations are expressed relative tn the aeroballistic frame,

The seven degrees of freedom are u, v, w, Pp: pé, q and r.

A number of details about the seven degree-cf-freedom model

must be clarified.

These include:



(1) Transformation of the velocity components to the inertial
frame from the aeroballistic frame,

(2) Transformation of the gravity components to the aercballis-
tic frame,

(3) Evaluation of the aerodynamic forces and moments (X, Y, Z,
LF’ LB, M, N).

Equations (3-1) through (3-4) describe the motion of a controlled
spinning projectile with respect to the aeroballistic frame. The
orientation of the .aeroballistic frame in inertial space is determined
by the angular velocity vector ({I) where

i =|q (3-5)
r

These vector components are used to generate the transformation
matrix as follows:

813 = g3 - ©ga )
13  CggF = C3p4
813 = CggT - C33d
€31 = -¢y;F
Sa2 ® -C17 > (3-8)
8g3 ™ -Cq3F
S3y = 130
gy = ©129
S33 ™ €139
7
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and these derivatives are integrated as follows

t
cij = cij(O) +J[ c1J dt (3=7)
0

The transformation matrix is used to transform the u, v, w
components onto the inertial frame:

¢l

W€l ey egy Ca1 || ¥ (3-8)
vlm | eg eag €32 )| Vv

vO| |13 ¢gq Caz iV

Components of wind aloft may be transformed onto the aeroballistic
frame as follows:

- o
o]
u €11 12 C13||Y%
o (3-9)
v €21 C23 C23||Vw
[o]
w €31 ©32 ©33|| Vw

Also, the weight of the projectile can be transformed from the inertial
frame to the aeroballistic frame

Xg c11 ©12 ©13]|°
24 31 ©32 a3 ||w
3-3
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ﬁ . It will be convenient to divide equation (3-10) by m and to let -
‘ g = W/m 7 ,
! 8y = Xg/m
. * ° & (3-11) -
X gy - YG/m
then -
Ex €11 12 ©14 |o
€z €31 32 33 |8
. Consistent with equation (3=12) it will be convenient to rewrite :
F . equation (3=-2) as: -
U= vr - wq + a + g,
vmoour 4 b+ g (3-13) -J
’i wmug +c + 8, -
The velocity components, u°, v°, w°, are integrated to obtain
position coordinates as follows:

T

x° = xo(O) + J'T‘uod't
v

v° = y°(0) + jtv°dt (3-14) -
0

—

B
— Ak AL‘_“‘('

2% = 2°(0) + jtw°dt
0 J i

3-4




l The aerodynamic forces and moments are expressed in the following

forms
v2s
F = 2—2—— C
N 2
M o= gvzsd c
.':'l where
F = force component
M = moment component
C = dimensionless coefficient
b ipv2 = dynamic pressure
S = reference area
d = reference length
o
i' The complete sets of forces and moments which are required are T
X = (pV¥8/2)Cy 1
1
| Y = (ov?8/2)Cy (3-18) 3
4
z = (pv?8/2)C, :
f L 2
. L
2
L, = (pV“8d/2)C ]
B LB (3-18) ;
M = (pV%sd/2)C,
’ 2
* N = v¥sd/2)C b




where X, Y, Z are forces in the %, y, 2z directions, respectively, and
L. M, N are moments about the X, y, z directions, respectively.

The moments are described by the adjectives rolling, pitching, and
vawing, respectively, but no similar adjectives have been developed

for the forces.

The subscripts, ( )B and ( )F' have been introduced to distin-
guish between the rolling moments which acts on the body (B) and the
rolling moments which acts on the fin frame (F). The corresponding
moment coeffizisnts are CLB and CLF' respectively.

It became common practice to expand the dimensionless aerodynamic
coefficients as a series expressed in terms of a number of dimension-
less variables. The more important dimensionless variables are:

o angle-of-attack (rad) :

8 side-slip angle (rad) »'%
(de/2V) dimensionless roll-rate of the body

(rad/sec) f

(ppd/2V) dimensionless roll-rate of the fin frame, ;

(rad/mec) 3 ‘

(qd/2V) dimensionless pitch-rate
(rd/2V) dimensionless yaw-rate
§ control deflection (rad)
A cant angle (rad)

The coefficients of each series are partial derivatives of the dimen=-
sionless coefficients with respect to the dimensionless variables.

However, it has not become common practice to employ a partial
derivative notation. 1Instead, a notation scheme with subscripts is
employed., The following conventions will be adopted for specifying
the non~dimensional aerodynamic coefficients ([1], p.23).
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less,
symmetry.

Cnup

Cnd

F
Cogs

will be used.

~C

A
Cyg B + Cys §7
=Cza ¢ = Czs Sy

F p?d) F F F
Czp(1ﬁf * Con BF * Cppg B Sy *+ Cpyp @ 8y

2 G)

clp 2V
d péd)

Cma @ * Cng (%V) * Cpap B QTKF * Cms Sy

1
rd Pg
Cng B*Chr EV) + cnap o (EV> * Cps Oz

B
+ Cra %3

= -Cya h

Cus

" “Coa

- Cmq >

- Cme

- Cms
F

- Czae

/

w
]
-3

>,(3-17)

The coefficients of the dimensionless termas on the right hand sides
of the equations are called aerodynamic derivatives and are dimension-
The following relationships are valid because of rotational

(3-18)

Thus, a total of 19 aerodynamic derivatives of which 12 are independent
The independent derivatives are listed bslow,
with an alternative notation.

along

-
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Cy cX axial force
n * Cza CzA normal force due to angle-of-attack
Czé CZa normal force due to control deflection
: Cmu CMA moment due to angle-of-attack
. Cmq cMQ damping moment
Cnap CNAP magnus pitching moment
Cm6 CMa moment due to control deflection
; Cip CLPF fin rolling moment due to rate-of-roll
CEA CLAF fin rolling moment due to cant angle
ﬁ‘ Cgp CLPB body rolling moment due to rate-of-roll
Ciss CLBF dihedral effect

C?A AB CLAB body rolling moment due to c¢ant angle )
The symbols in the second column are mnemonics which may be useful in
labelling computer printouts. (The derivatives have been listed here

in the order in which they are introduced in simulation modules.)

The expressions for the aerodynamic derivatives become: - 1
C, = -Cp )
Cy = =Coo B * Cps Sz
Co ™ Coa @ - Cas 6y 1

d o
- oF (PF F F
Cr ® Cop (1nr) * Coa 87 * Cpgs B 8y * Caps 63 )y (3-19) q




X

The dimensionless aerodynamic derivatives are functions of Mach
Number, M. For the present these functions will be treated as second
degree polynomials, e.g.,
C.=a. + a,M + a M (3-20)
X 0 1 2
The tollowing equations, express V, « qnd B in terms of the state
variables u, v, and w, and the wind's components Uyr VY and L

~

V2 = (u + uw)2 + (v + Vw)2 + (w + Ww)2
-1 v+ Vw
B = tan m; B (3-21)
w4+ W
o= tap~t = L =
\/(u tu)t (v o+

’

The most important equations for the seven degree-of-fresdom
model are summarized in Table 3-1.

Fin deflection signs refer to those panels whose rotation axis
when aligned with the positive y or z axis and are consistent with
positive rotations about these axes. This applies to either panels
which deflect together (§) or panels which deflect in opposition (A).
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SUMMARY

o

DL

Lo

TABLE 3-1

OF EQUATIONS FOR THE SEVEN DEGREE-OF-FREEDOM MODEL

= X/m
= Y/m
= Z/m
= VI - Wq + a8 + gy
= -ur + b +
gy

=ug + ¢+ g,

= ApPy * ApPp

= Bg

= Br J

= (Lg-T)/Ag

= (L+T)/Ap $

= (M-hyr)/B

= (N+hyq)/B y
'\

= (oV3s/2)C,
- (pvzs/z)cy
= (p¥33/2)C,
= (pV28d/2)Cpp >
= (pV28d/2)C;p
~ (0v25d/2)0,
= (ov3sd/2)C,,

3-10

Accelerometer
Equations

Force
Equilibrium
Equations

Angular
Momentum
Equations

Moment
Equilibrium
Equationns

Aerodynamic
Force & Moment
Equations
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TABLE 3-1

SUMMARY OF EQUATIONS FOR THE SEVEN DEGREE-~-CF-FREEDOM MODEL (Continued)

Cﬁ = -CA
C} = ~Cou B * Cps 6z
Cz = -Czcl o - czd sy

This completes the deflinitions of the details of
of-freedom model of a controlled spinning projectile.

)

a8, \ Aerodynamic
Coefficients

& seven degree-
All of this

detall can be embodied in a single smsoftware module which can be

represented by the block diagram shown in Figure 3-1,

This can be

done by partitioning the model into the following parts:

(1) Acceleration due to gravity

(2) Non-dimensional terms

(3) Atmosphere

(4) Aerodynamic forces and moments

(3) Equations of motion

(6) Coordinate transformation and intergration
(7) Direction cosines

This realization is described in the appendix as the realization of

Module Number €9080 '"Controlled Spinning Projectile'.

The appendix

also describes the realization of Module Number 68220 "7-DOF Projectile

Including Seeker and Canard Deflection".
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CONTROLLED
SPINNING
PROJECTILE

TR
4>
T T

B K el |

=T

IRROE

F
Sl 1%

Figure 3-1, Block Diagram Representation of a Seven -
Degree-of-Freedom Model of a Controlled
Spinning ProJectile.
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SECTION 4
THE FIVE-DEGREE OF FREEDOM MODEL

There are at least two ways of simplifying a mathematical model.
One way is by an arbitrary introduction of simplifying approximations.
Another is by a careful application of perturbation theory. Both
ways will be developed here,

The first way (arbitrary introduction of simplifying assumptions)
can be approached as follows:

(1) Assume time histories or constant magnitudes for u .and for
py and ignore the state equations for U and ﬁé.

(2) Evaluate the remaining equations using the assumed magnitudes
for u and pé.

(3) Discard terms whose magnitudes are judged small enough
to be ignorable.

This technique can be pushed s¢ as to obtain linear equations, but
it is not necessary to carry it that far.

The equations for the five degree-of~freedom model can be obtained
by deleting the appropriate equations from (3-1), (3-2), (3-3) and
(3-4) which define the seven degree-of-freedom model. Thus

= Y/m Accelerometer
¢ =2/m Equations (4-1)
V = -ur +b + g Force
) y Equilibrium (4-2)
w = uq + ¢ + g, Equations

S VA - - -

*
-1
]
.- L
.1
|
'
] 4
»




_—n

© Al

9

[ ]
;
;

By = ApPg * Appp

Br

o
(&3]
n

e
o
)

(L+T)/Ag

O
L}

(M-hlr)/B
(N+h1q)/B

s
"

Angular
Momen tum
Equations

Moment
Equilibrium
Equations

Equations (4-1) through (4-4) are not linear.
be made to approach linearity by the following approximations:

hyPy = Brpp ~ 0
thF - quF ~ 0

hlq - (ABPB + AFPF)Q ~ (Aapé)q

(4-3)

(4-4)

However, they can

\

) (4-5)

/

Substituting (4-5) in equations (4-1) through (4-4) gives:

Y/m
= Z/m

o o
E

de
| |

-ur + b + gy

e
]

ug + ¢ + gz

L « 10
m
[ ]

(L+T)/Ag
(M-Apppr)/B
(N+AgpPpa)/B

De
]

e
[

> (4-6)

/

It remains to treat the force and moment terms (Y, Z, L, M, N) in a

consistent manner,
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Note that the terms rPp and arp have been dropped because they
are second order quantities. The variables v, w, pF, q, and r are
expected to be small, so their products are second order quantities.
The product terms have not been dropped because Pp = 0. The magnitude
of Py must be evaluated and the consequences of its being non-zero
must be included.

The required force and moment equations can be selected from
equations (3-15), (3-16) and (3«17).

L2
Y (0 v25/2)C, 3
z = (V2s8/2)C,

L = (pv25<:1/2>cLF
M o= (pv2Sc1/2)cM

2
N = (pV°Sd/2)C

CY - 'CzaB * Czﬁ.éz

C, = Cyo@ = Cpsby

d

F (PF F F F

clp (Tﬁr) + ClA AF + CLBG B6y + clBG aﬁz
td

d (PB) |

M Coa & cmq (%V) + Cnap B \3v/ * Cps 6y

Ld
- rd\ o o PB
N Coa B * Cmq (W) * Coap ® (EV) * Cpg Oz

Equations (4-7) can be used to express the forces and moments in the
following form (see equations 3-21),

(9}
n

(9}
n

/
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: REE-ECEESIE N
- y . W
z--ﬁ(w+W)+-ﬁ6y
- oL L
L = 3pp PP * 35 OF $ (4-8)
- oM . M oM oM
Moy (WHw) + 5083 (v + vy) + 53 dy
. aN aN N aN
) Ne=5 (vt ) + 3R Tty (W + wy) + =7 éz )
.f O0f course, these partial derivatives are pot non-dimensional.
P T
‘ 1
H Equations (4-8) have been obtained by neglecting the product terms . :
| Béy and aéz and by employing the following approximations (see ]
' equations (3-21). _ .
' V+Vw 7
J B & gt ‘
) (4-9)
LAL I d
QH-—V——
/
1
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The expressions for evaluating the partial derivatives are:

32 . 3Y _ _ VS \
W 3V ) zZa
2, _3Y _ _ pv%s
Efy 332 z6
oL _ pvsd? oF
apF 4 w
v2sd .F > (4-30)
3L .
3oy =0
M _ _ AN _ pVSd .
W v mo
: 2
| 34 _ BN . ovsd
39 3r 2 “mq
2
. aN . P597Pp
- W w d nop
! aM o . ovesd
| T~ 55T Cms /

Substituting (4-8) into (4-8) gives

o
[}

[(3Y/3v)(v + vw) + (aY/BG)Gz]/m

c = [(3Z/3w)(w + ww) + (BZ/BG)Sy]/m

TTam T

, Ve-ur + b+ g ]
: . p (4-11)

: W= ug +c+g,

' Pp = [(3L/3pgp)py *+ (3L/3Ap)Ap + T1/Ag L

: q = [(8M/8w)(w+ww)+(8M/8q)q+(8M/av)(v+vw) i
. + (3M/38)8y - Agpyr]/B
= [(3N/3V)(v4v, )+ (3N/3r)r+(IN/3w)(ww ) )
+ (3N/38)6, + Agppal/B .

r‘-
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We introduce

. vv

some more notation

w-(u)q+l<a—fé>(w4-ww)+%<Z>6Y+sz
(_1_3L_> + (2 aL)A + I
)t (G )
q = <% i%) (w+ww)+ (% %%)q+ (% %% (v+vw)
App
1 3M BPR
(3 %)s, -2,
e (58 oo (B £ o (322 oy
Agp
1l 3N B'B
*(ﬁﬁ)%*—rq

wl Y 132 - bVS
mSv S m oW w " ,!mcza
-wq-u .
13Y _ 132 _ gv3s
Y m 3 " W * T Czs
z y y
.1 3L
Ay Wy
1 aL
| -
Ap g
_i_
F 2
-iﬂ-lL-R -depéC
Bav B w W 48 nap
B3~ B3~ R " &E Cne
< 1AM 10N, .oT__VSdZ
B3 BT R, = *I8 Cmq
ABp'
- B
-+Rq -5 28
B3~ *BE3s~* B 28 Cms

> (4-12)

{4-13)




The equation for ﬁF is quite independent of the other equations.
It will be convenient to write our equations in the following form

Pp ® Py Pp + Py 8p + Py T (4-14)
f".\ ~— -T ﬂ-j - T "T
v Vv ¢ O Vr v (o} Vézl o] Vv 0 GY
w10 Ww Wq 0 ], wﬁy 0 010 Ww Gz
. (4~15)
al |9y Qq Q| 1 2 Q 0 00K Qw &y
r Rv Rw Rq o, r 0 RG 00 Rv Rw g,
- ./ L o U J - J v
w
Vo
_ - - ~ “
- -
tﬂ vvooowv 0 Vs 00V, o [s
z Yy
c . 0 ww 00 w . Wsy 0 000 Ve Sz
o 0 /v 0O q 0 0 000 /v 4
y (4-1\/
E 1/v 0 00 r 0 0 o011V O Rz
. L v L . -
-
Vw
C‘"
-

The five degree-of-freedom model can be represented by a hlock
diagram such as that shown in Figure 4-1.

Equations (4-14) (4~18) and (4-168) are written with respect to the
seroballistic coordinate frame. The control deflections, 8, and &,
must be generated in this frame or transformed from the fin frame.
However, the gravity components and the wind components must be
generated in inertial space and transformed onto the unprimed frame.
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Figure 4-1,

5 DOF MODEL OF A

CONTROLLED
PROJECTILE
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Block Diagram Representation of a Five
Degree-of-Freedom Model of a Controlled

Projectile.




The details of the five degree-of-freedom model can be realized
most easily by realizing a four degree-of-freedom model first. The
next section (section 5) should be read at this point and forms the
basis for the discussion which follows.

The realization of a five degree-of-freaeadom time-variant model of
a controlled projectile is shown in Figure 4-2. This model is &
combination of the modules which comprise the four degree-of-freedom
model plus additional modules to simulate the moment equilibrium
about the x-axis. The spare element in the time-variant slement
generator can be used to generate the magnitude of Ph. Also,
advantage can be taken of the fact that Wq = 4,

A five degree-of-freedom time-invariant model can be realized
as shown in Figure 4-3.

4-p

e e e e e 4 a o




*a1¥1309f0ag PITI0IJUOCD B JO [OPON JUBTIBA-OWYL JOU-G B JO UOTIEZTITEIR ¥ =andiy

ry
34
4y
7 7]
- g
3 ™
M T
.m.mL 'y
d.. sp—1 i 9 b 3
— P — -
5 ’ 5 o
3] N <] st d.—l...
4 = I .
= s 4+
L2
= ] ——=
e iy = B
TTITarORE STLLIRFORA
aITIONLNCO ﬂ.—.llw.lulmo
v 0 ‘T300R v 0 £
1NWIEVA FMIL FTmurl o0+
00 S

4=-10




—wwes ——— o NS il 2 T—— W Ty -

"91T198[01d PASITOAIUC) B IO [SPON IJUBIIBAUI-IWIL JO(-C ® JO UOTIBZI[EIY ‘€% aandrg

I
- I -
= _J4 _..
5l © "% o o
mi
24
%
- S| X
iy 3] " N
= %
- o
~
= 2l -
3
—
¥ :
° sfi )
ln hlﬂ'
= ~ T
- v
ofa,
.Im ﬂ.b . .-
“al 4 £ M sia, .
17 . q ¥ vj%g .
— o; £ 5
ry e 13 a z i i
: 9 —
- X 17,
TNLAroSd :
OFTTORLECO ke gibmcie |
¥ 20 TEOOM e &
AIAVINVARI-2N12 v 30 TI0N
400 © WYLl 200 ¥




SECTION 5
THE FOUR DEGREE-OF-FREEDOM MODEL

The four degree-of-freedom model can be obtained readily from
the five degree-of-freedom model by setting ﬁF "PpPp " 0. Then

= Y/m Accelerometer
- Z/m Equations (5-1)
I vEosur v b4 gy Force (5-2)
- Equilibrium -
w ug ¢+ g, Equations
h, = AP Angular -
. 1 B"B Momentum '
h, = Bq Equations (8-3)
h3 = Br
(I g = (M - h,r)/B Moment 1
qQ= - S
. 1 Equilibrium (8-4) o
r = (N + hyq)/B
i These equationa will lead to equations which are equivalent to R
equations (4-15), (4-18) and a subset of (4-13), These equations are "
rewritten here 8o as to have a compact summary. '
v, =W, = - H2c )
» v w m “za )
| -V, = Wq = U .
Vs
"Wy = Ws = SmmCas > ]
[ z Y 9
4
Qy = Ry = P34 Py )
nap !
- pVSd :
; Qw -_RV. Cnu :




2
»m = VSd b
u QQ " Br &4? Cna
A-p
- - BB
-Qr + Rq + - (8=5)
.. Q, = + R, = 2V28d . .
! $ 8 mg J
; P‘—} r~ T ™ =~ —~ - ™
b v Vo0 0 V.| [v 0 Vez 10v, 0| |6 )
\ W 0 Ww Wq 0 w Way 0 010 Ww Gz
. - o+
q Qv & Qg 9| |9 Qs 0 004Q,Q &y (6~6)
h; i R, B, Ry Ry Lr o R, 00R,R||g, -
3 - L - - . - :
Ve ‘
L’-: LWVL
~ - — - - [T
F bw VV 0 O a VT 0 Vsz 00 Vv 4] 7 GYT
A
: cla| 0 W,00 |w +w5yooooww 8,
‘I o 0 1/vOooO q 0 0O 00 0 1/vV gy (8=7)
B 1/v 0 00O b o 0 0O 00 1/VO iz
- J L J U - J
v
= w
R w
-V i

Equations (B-8) and (8-7) are linear, but the matrix elomontd"may be
time variant.

In order to accommodate the time-variant nature of the four
degree-of-freedom model it will be organized as shown in Figures 5=1, )
5-2 and 5-3. The 'time-varying cocefficients are the magnitudes giveﬁ in
) in equation 4-5. These coefficients can be determined in a 7 DOF sim-
ulation and then expréssed as polynominals. Quadratic polynomials
will be reasonable at this time.
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Quadratic polynomials can be generated by module number 8130.
Ten of these can be combined in a single module as is shown in Figure
S5-4.

The realizations of time-variant and time-invariant 4 degree-of-
freedom models are described and compared in Figure 5-5.
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SECTION 6

SYSTEM DESCRIPTIONS EMPLOYING EXACT EXPRESSIONS FOR THE COORDINATE
TRANSFORMATIONS

The approximate five and four degree-of-fireedom models can be
employed in conjunction with exact or approximate expressions for the
coordinate transformations. The approximate expressions are more
eonomical of computing power and permit linearization and, therefore
they will be used whenever possible. However, the exact expressions
will be useful for error control,

The complete description of the projectile, which parallels.that
presented for the seven degree~of-freedom model (see Section 3) is
represented in Figure 6-1.

The target can be represented by the block diagram shown in
Figure 6-=2,

The relative motion of the projectile and the target is described
by the following equations:

0 . o _ .0
Au Up Up
o] (o] (o]
Ave = vp = Vp (6-1)
o . o _ 0
Aw W Wp
0O . 0 _ 0
Ax xT Xp
8y° = ya - ¥p (8-2)
0 o _ ,0
Az zT 2p
— 2 — D —_—2
R2 - ax° + Ay° + Az° (6=3)
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Then,
RR = ax°® au® + Ayo ave + 2z° Aw®
. 0 o o
R o~ S+ -A-RY— ave + -A—;- aw° (6-8)

4 seeker mounted in the aeroballistic frame (unprimed coordinate frame)
will develop boresight-error angles which depend on the pomition of the
target relative to the projectile, resclved onto the unprimed
coordinate firame. Thus,

X = € uax° (sme Appendix A) (6-7)
el p— - - L
Ax = c11 c12 c13 Ax°
Az c31 °32 Cag Az°
L o . . - -

The boresight-error angles will be

1 Az

>\Y = tan — (- Ix )
1 A (8-8)
xz =  tan ( ﬁ— )

The boresight-error angles measure the relative position of the

target and projectile, but they also include the effect of attitude
change of the projectile. This is not obvious from the exact
equations; but it will be obvioua from the approximate equationa which
are developed in the following section.

The relative motion of the target and the projectile can be
represanted by the block shown in Figure 6-3. This block also

Seanh

e mm . - & e




»
RELATIVE MOTION o
AND Lo
STRAPPED - DOWN L
SEEKER »
™ .
i |au®
eT +°
Yo aw® ;
“p [ax®
o 27"
o -
L .
]
.B.P.. LE_
| 5. .
8y
(0%
: 2 P
»
Y . L
:
! ]
¥
| '
\
h
A
Figure 8-3. Block Representing the Relative Motion of Target and »
Projectile and the geometric processing periormed by 1
a Strapped-Down Seeker. A
!
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represents the geometric processing done by a strapped down seeker

and generates the boresight-error angles, AY and Az. These functions
are valid for the 7-DOF, 5~DOF, and 4-DOF models.




-w:

SECTION 7 - D

SYSTEM DESCRIPTIONS EMPLOYING APPROXIMATE EXPRESSIONS FOR
THE COORDINATE TRANSFORMATIONS . b

System descriptions employing approximate expressions for the ’
coordinate transformations permit linearization in a manner comperable
to that which has been introduced for the four and five degree of
fresdom models. Such treatment permits the linearization of the A
complete interception problem. The linearized state-space equations »
for the physical plant are:

k(t) ACt)X(t) + B(t)u(t) ’
(7-1) |

r(t) = C(t)x(t) + D(t)u(t)

PP PP S

where

x(t) = a state vector
y(t) = an output vector LI
u(t) = an input vector '

The state vector will include the following ter?a:

Py angular velocity of the fin frame (rad/sec)

Vp

} translational velocity (ft/sec)
| W
P

q
} angular velocity (rad/sec)

r




8 rotations (rad)

y
} translational perturbations (ft) ‘
z

£ control deflection (rad)
The output vector will include tne following terms:

b

} translational acceleration (rt/secz)
c

a angle-of-attack (rad)

] side-slip angle (rad)

| -
Az

- .
A . -

X y } look angle componeiuts (rad)

} relative position components (ft)

X!'P
'
.‘. The input vector will include the following terms:
o
Uy
t.» vg wind components (ft/sec) AF fin cant angle (rad)
' o
wo ]
S |
[ . 1
b GT + 1
. target maneuvers (rad/sec) !
]
T

7-2




The approximate expressions developed in this section will
employ a coordinate frame which is fixed to the cruciform canards
(the xF, yF, zF). This convention makes it possible to include the
effects of small perturbations, ¢, in the roll angle of the canard
frame. The perturbation equations for the direction cosines are

similar to those which have been developed in equations (2--1Q),.

Aflj = f2jw - fBje
AfSJ = flje - 12J¢
where
t _F
¢ = ¢ (0) + pypdt w
oI F
8 =9

(0) + ojt qpdt | (7-8)

U =y (0) + d[t rgdt |

The resolution of gravity onto the fin frame is described by:

F F
8, * 8, i 4 Ay, fyn ¥ 82, 2.4+ 0L, 0 14+ Atls]

F r

B, * OB, | ™) Tgy ¥ 0Epy fgg ¥ Iy Igg * M| [ O =8 [fa3 * 8Ipg (7-4)
F F ,

gy * 08, f39 * 083y g * 85y I35 *+ 8fa5] | 8 fag * 0,

The usual practice will be to include the effect of gravity im the
reference trajectory. Then it is only necessary to treat Ag in the
linearized equations. Thus:

A oA PN SRR Wy e




A £ i1 [s]
08y 0  -Izz I3 ¢
F
F
88, | | -fp3 fiz3 O | |V |

The transformation of the wind components oato the fin frame is
given by:

Uy 19 f40 fya| | W
F o
Ve |™ | f21 fa2 faa| | Yw (7-8)
F o
w £ f £ w
LW L 31 32 33_ L w__

No perturbation terms are included in the transformation
because the wird components are considered to be small quantities.

The velocity components, computed in the fin frame, must next
be resolved onto the inertial frame. Thus:

P - _— -y e
o - - - ]
up| |fq1tIg¥ 2318 fgy *Ig99 ~f440  faq+£148 =155 |up
o) ) - - - F -
Vp| = |f1g ¥ fgo¥ = fgp8 fpp*fgg0 —figb P+ f)00 =1500] vp| (7°T)
o _F
¥p] P13 * faa¥ " Tas® T3t fzgt “Tygb Iyt Iizf “Ipgé |V

Expanding equation (7-7) and remembering that vg and'wg are small
perturbations:

]
L'L}A . A. -

e




m}

ol [ 1 r,F R

Up T3 F21 Iz | W

0| F F

Vp f12 f22 132 Vb + upw (7-8)
o] F F

w £ fou f Wy = Ugf

U'PJ L1 t23 ts3) P T P

The target's velocity can be specified so that v$ = wg = U, ‘lhean the

target's velocity can be resolved onto the inertial frame in a similar
manner and:

(o]
Uep 811 Bp1 %31 U
vo [=| a a a Tw (7-9)
T 12 %29 39 U
o T
"7 | | %13 83 833 | | ~Upbp

The position coordinates of the target are:

(e} o) t . .T
Xp = Xp(0) + oI up (8y3 * 8g¥p = Bgy8p)dt
ys = ya0) + ojt up (Ryg *+ BygUp = Bgg8p)dt (7-10)

o , O t T -
zg # 27(0) + of Up (Ry4 + 8gq0n = 8448n)dE

and the coordinates of the projectile are:

(7-11)
o _ o ot F F . F F F N
xp = xp(0) + 0 29y up + fgq (vp * upy ) + £59 (wp - upd )] de
o

o, .0 tp F F, F F__F 5
yp = ¥p(0) + ][ Ty Up * fpp (Vp ¥ upV ) + fgy (wp - up® )] dt

o . .0 ctf F F, F F__F

z, = zP(O) + o) f13 up + 123 (vP + upw ) + f33 (wP upe )] dt

7-5
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The relative position components of target and projectile, defined
in the inertial frame are:
2x° = %2 - xg = ix° - Ax®

A
5y° = yg - vp = &° - 23° ) (7-12)

o - 50 _ ADO
t2° = zg - 23 = iZ a2

where
(7-13)
~ 0 o) o) t T F T
AxC = xT(O)—xP(0)+0J‘ (8 4ug=2,,up) dt+0J" up (Bgq¥p=tg,0p) dt
£5° = yp(0)-yg(0)+ ¥ (31g07~25qup) dt+ [° up (Rgo¥p-tggfyp) dt
£2° = zg(O)-zg(0)+0_"t (alaug—flaug) dt+oj* ug (8yg¥p=8gg0y) dt
and
AO t F F F )
ax= - d[ [’21 (vp + upy ) + 239 (¥p - upd ﬂ dt
t F F T
A§° - of [1522 (Vp + ugw )+ 132 (wp - uph )] dt p (7-14)
AO t F F F F
A2° = of [123 (vp + up¥ ) + .5 (Wp = Upo )] dt

It can be seen that the components of &io, &§o’ &Eo are functions
of time, whereas the components of A§°, ¢§°, AQO are functions of the
perturbations vg, wg, 8 and V. These relative displacement compo-

nents must now be transfcrmed back to the fin frame.

7-6
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(7-18)

ﬂ ( n o NN~ 0 AO0M -
I AX fll le 113 f21w-f318 fzzw-faze fzsw—fsae AxT+AX .

ol ™ - ~ 0,20
2y fa1 Tag fag| *|Taaf~T1a¥ Iggf-figb Tgaf-Iigh| )| 4y +dy

o .
E&°+Az° ‘

' F
! 227 a1 %3z Tas Lf119'121¢ 11901908 1138-153¢
s -’

The right hand side of equation (7-15) expands into four terms which
are treated below, one at a time.

The first tg;m is:

- - - - -
[¢] ~ F 4
211 flz 113 AXx AX ]
~ 0 ~ F o ]
231 I3 fgz| |B27| =|b¥ (7-186) L
~ 0 ~F
—y - - ‘ -

The second term is:

foq¥ = 2500 fo00 = 450 fo00 - 2.0 [Ax

1319 = T34V f£390 - f90 2330 = Liqu | | Ay

- _ _ 0 C o
2119 = T3¢ 2308 = fg90 1,40 123¢4 bz

- (f21&§° + 122&}° + 123&E°)w - (131&§° + :32&y° + 133&E°)e

"

~ 0 ~ 0 ~0 o ~ O ~ 0
(251887 + £458Y" + f4342°)¢ ~ (11151 * 195870 + 114820y

L(flld§° + 112&§° - 113&E°)e - (:21&§° - :22&§° + 123&E°)¢

* « | &yFy - £2Fe
» £2Fs - £%Fy (7-17)
| &xFe - £yFe




The third term is:

T DRI
g £1, f15 fig||%] {11 f12 T13 f [ g1 (Vp+up¥ )*tigy (Wp - upd)jde
. ~0 t F _  F.|| :
3 fo1 fag faa||8V |={f21 f22 23 of Pzz (Vp+upy )+ 25y (Wp = upb)lde g
~0 t T, -
_ £2, 1gp 133[62° [fa1 f32 Tas cf [23 (VP+qu )*iqq (w upb)| at
L. —LJL -L --

po -~

< F_F e
oI E 11 21112 T2 *113 fza)(v S V) * (g f31485520p 8y Tag) (Wm0 °ﬂ ]

et F_F F_F
oI E’zl f91*1g0 Tap*25g 153) (Vp*ip ¥)+(fgy 2514805 25p%255833)(Wp “peﬂ“

t -
F ¥_ ¥ =
) Efsx 231*153 T22*1gg T23) (Vp*Up ¥)*(Zgy f31* 23y 2ag*gatas)(¥y “peﬂdt B

(7-18) S
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The fourth term is:

(2.0 = £..8 o0 = £.08 fo.0 - £..0] [aR°]
21 31 fg9 328 Ta3 33
AO
2490 = £190 fg390 = £190 fgq0 - fi50) |4V (7-19)
AO
| £128 - 2238 T8 - Zpp0 330 - Tyg0| | AZ |

The expansion of this term contains only products of perturbations,
all of which can be ignored. Then the expansion of equation (7-18)
is:

. - - 4

AxFT E’wa ¥ - £ 0 |

oy | = | & T [+ | &Fe - Blule| J° F + of wrat (7-20)
F ~ F ~ F o~ F t F F

Az Az Ax™8 - AyT 9 (w, = e)dt

L J L 4 L - LOJ‘ P -

Equation (7~20) deacribes the relative position of the target
and projectile resolved onto the fin-frame. It can be seen that
this equation encapsulates a great deal of detail which would
require a large amount of computation if the perturbation equations
had not been developed.

It may be useful to identify the terms which appear on the
right-hand side of equation (7-20), thus:

~F ~F ~F
ux , Ay , Az are relative position components deter-
mined during the reference trajectory.
u; projectiles component of velocity along
the x-axis of the fin-frame.
8, v perturbations of the projectiles motion

7-9
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0.

kl Thus, axF. Ay, AzF, ug, are time-variant coefficients to be deter-

mined from the computation of a reference trajectory while vy Wp
5, v are state-variable perturbations to be determined from i linear

F

model of an interception.

The equations developed in this section are an alternative 1
to the non=-linear equatiouns developed in sections (1) through (3)
and in Section (8). All of these sections were developed with the
description of motion referred to the aeroballistic coordinate frame. o
This convention has merit in facilitating understanding of complex 1
motions. However, the aeroballistic frame coavention does not permit
& roll-perturbation, ¢F’ to be derived as a small quantity of the
first order. Formulating the description of the motion with respect
to the f£in frame permits retaining the roll perturbation as a small R
quantity of the first order in a linear model. '

Y CCTUTTCETUC

.

1 ) AR

Equation (7-20) has been helpful in understanding the roll-
control of the fin-frame. It will also be of considerable importance
when optimal design formulations are undertaken.
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APPENDIX A
7-DOF PROJECTILE MODULE DESIGN DETAILS




A.1 INTRODUCTION

This appendix describes the details of a moculd which simulates
seven degrees-of-freedom of a CHAMP projectile. The following
modules are involved in this production:

8210 Acceleration due to gravity

57130 Non-dimensional terms with wind

p200 Atmoaphere

i 57110 Aerodynamic derivatives
62080 Aerodynamic forces and moments
57030 Equations of motion

. 860 Direction cosines

i 870 Transformation and integration

68060 Controlled mpinning projectile

68220 7-DOF projectile including seeker and canard deflection

i Details of these modules are presented in the following sections of .
: this appendix. Background material on the modular software system

has been published in the CHAMP Phase I I'inal Report, Appendix B,

A.2 ACCELERATION DUE TO GRAVITY (Module #8210) “

The force due to gravity can be expressed conveniently in the
inertial coordinate frame. The components in this frame are:

xg-o

v© = 0 (where g = acceleration due to
G gravity) A-1

o -
ZG ng




These components can be transformed to the unprimed coordinate

. frame by the following transformation:
- [e]
Xg =CXq A-2
- - - - pm em p— -
g X6 | ® (€11 S12 13 | [0 |™ |¢13 |®
-
Y6 | |21 ©22 ©23 | |0 °23 A-3 |
ii .
| Zg | ™ |31 C3z Caz | [DE ¢33
Y = L -’ L - - -
:‘. g - g - [E—
ﬂl xG/m ] C13 |8 ) 1
i Yo/m | | 23 A-4 |
Y
Y 2g/m | | ca3 o
L. - U - ‘

and equation (A=4) gives the terms which are required in the force
equilibrium equations, (3-2).

This computation can be performed by Module No. 8130 which was
coded directly in MARCO-10. The module is represented below and
is summarized in Table A-1.

’
A At e

FORCE
DUE TO
GRAVITY

p——n1 7,1 (eem——
—— 3 7’3——

8210

Figure A-1. Module No. 8210 Force Due to Gravity.

A-3




TABLE A~1
n MODULE NO. 8210 - ACCELERATION DUE TO GRAVITY
Algebraic )
I L M  Symbol  Dimensions Explanation )
. Connections
3 1 ¢4 dimensionless direction cosine |
g 2 cyg dimensionless direction cosine ]
3 Cag dimensionless direction comine
Parameters
@ 4 1 nmg lbs weight of the projectile -
: Intermediates *
7 1 xG 1lbs force components due to
gravity .
2 Y5 lbs
3 ZG lbs

A -EARStd ~ ME

A.3 NON-DIMENSIONAL TERMS (Modules #357000 & #57130)

P Y S P )

The inputs to this module are:

4

z = the negative of the altitude, h (feet)
; u,v,w = velocity components (feet/second)

Pp P 4T = angular velocity components (radians/second)
r The functions of this module are:

(1) to transform z into h=-2, which 18 required as an input
h by the ATMOSPHERE module (#9200),




(2) to derive V, o, and 8 from u,v,w

(3) to derive the non-dimensional terms de/zv, de/2v,
gd/2v, and rd/2v, where d is a reference length.

. By definition:
b
: e
ﬁ V= V/u2+v2+w2 A-5
sina= ¥ tang=e =X — . 4 = tan~t ¥ A-8
v (202 (2,2
sin 8 = —Y— ; tan g =Y ;g = tan"* ¥ A-7
2 2 u u
vV uley

The composite module can be implemented with standard modules as
shown in Figure A-2,

This same module can be employed to evaluate the non-dimensional
terms required to describe the effect of winds, provided the
following replacements are made:

:F u+u+uw

vV + VeV -8
W A

W we
%l . LA™

where u,v,w are state variables resolved on the unprimed coordinate

frame. Uy, VW, are wind components resolved on the unprimed
coordinate fra--.

Now the wind components are best described in the inertial frame,
so that:

A-5
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The transformation and additions have been combined in a single
module as shown in Figure A-3 and Table A-2.
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TABLE A-2
MODULE NO. 57130 NON-DIMENSIONAL TERMS (WITH WIND) DICTIONARY T

-» =

L M Algebraic
= = Symbol Dimensions Explanations _
Connections
3 1 Z ft z position coordinate
2 u velocity components re-
3 v ft/sec solved onto the unprimed
4 w coordinate frame
5-13 ciJ dimensionless direction cosines
14 us velocity components of the .
15 v© 1t /sec wind resolved onto the
. inertial coordinate frame
18 w
w .
17 Pp rad/sec x-component of angular o
velocity of the fin frame C ]
18 Pp rad/sec x-component of angular . t
velocity of the body E
g
18 a rad/sec angular velocity components -
20 r
Parameters
4 1 d/2 1t reference length C
Intermediates
7 1 u,, velocity components of the
2 v, £t /mec wind resolved into the 1
unprimed coordinate
3 ™ frame 1

A-9



TABLE A-~2 (continued)

I MODULE NO. 57130 NON-DIMENSIONAL TERMS (WITH WIND) DICTIONARY ,
L M Algebraic
= - Symbol Dimensions Explanation .
Intermediates )
4 u+uw velocity components of
5 vV, ft/sec the relative wind resolved
onto the unprimed coord-
6 b inate frame b
7 h £t altitude ]
] \% ft/sec magnitude of the relative 1
wind f - 4
11 ] rad angle-of-attack
12 B rad side slip angle
13 de/Zv'\ dimensionless non-dimensional terms ' i'mi
14 péd/2v > dimensionless non-dimensional terms . A
15 qd/2v dimensionless non-dimensional terms
E 16 rd/2v ) dimensionless non-dimensional terms




A, 4 ATMOSPHERE (MODULE NO. 9200)

The relationships necessary to define atmospheric properties
as & function of altitude are based on standard equations of fluid
statics. The numbers used in the equations are those of the 1959
ICAO Standard Atmosphere and its extension. The Model is pilecewise
continuous in three segments. It is based on a constant lapse rate
from ses level to the tropopause (38,080 ft.). The atmosphere is
assumed to be isothermal from 38,088 ft. to 82,021 ft. From 82,021
ft. to 154,189, the static temperature increases at a constant rate.

The outputs of the atmosphere model are uniquely determined
given the altitude as an input. These outputs include gstatic
pressure ratio, and local speed of sound. In this particular formu-
lation, one subsidiary calculations is also performed. The air-
speed is used as an input to the model so that Mach No. can be
calculated. Thus, having specified altitude and airspeed, the model
determines static pressure ratio and Mach No. for use in calculsting
aerodynamic forces and torques. This module is coded in MARCO-10,.

Definitions:

a is local speed of sound in ft/sec

A is ratio of local static pressure to sea level
static pressure

M is Mach Number

tr is the retio of local static temperature toc sea
level static temperature

v is true airspeed in f£t/sec

h is altitude above sea level in ft.

A-11




. .

Connections:

% N

Parameters: None.

Initial States: None.

Intermediates:

6

tr = 1-(8.8754 x 10" )h

o
1A
=3
A

. < 380889
" \ = gpB-2561

tr = 0.75187
36089

A
=2
A

. < 82021

(-4,8083 x 10 ")h

1.26856e

0.49160 + 3.1732 x 1078

tr h

82021 < 154189

0.02456(0.85383 + (4.2204 _ -
< 10-8yp)-11.288 |

A
=
A

- T‘T’Tﬁm-‘y(, « ¥
>
]

tr = 1,0 ' 1

, o o(--322004 + (-4.118414 x 10™°)h) h > 184189 4

w
[ |

1118.9y tr

=
n

V/a

. «

States: None.
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Figure A-4. Module No. 9200 - Atmosphere
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A.5 AERODYNAMIC FORCES AND MOMENTS

The inputs to this module are:

The control deflections (GY and Gz)

The cant angle (AF)

The pressure ratio and Mach Number (A and M)

The non-dimensional terms (a, B8, prd/zv, de/Zv, qd/2v,
rd/2v)

N 0 O p

The most important outputs are:

8. The components of aerodynamic force (X, Y, Z)
b. The components of aerodynamic moment (LF’ LB' M, N)

The simulation is synthesized in two steps. First, the
aerodynamic derivatives are evaluated as functions of Mach Number.
This is formulated in Modules Number 57110 and 8130. Then the
derivatives are combined to evaluate the non-dimensional force and
moment coefficients and are multiplied by the appropriate dimensional
terms to yleld force components in pounds and moment components in
foot~pounds. This is accomplished in Module Number 68050.

A.5.1 AERODYNAMIC DERIVATIVES (Module No. B7110)

The several aerodynamic derivatives are expressed as quadratic
functions of Mach Number; 1l.e.,

2

Cm Ao + AJM + A M

1

where the coefficients Ao’ Al‘ A2 are fitted to the best available
wind tunnel data or estimates in an independent procedure. The
derivatives which :are employed in the simulation are:

A-14
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i CA axial force
f' CZa normal force due to angle of attack
CZG normal force due to fin deflection
Cma pitching moment due to angle of attack
Cmq damping in pitch
cnap Magnus moment
Cm6 pitching moment due to fin deflection
F h
CEp roll damping of the £f£in R
CEA rolling moment due to fin cant Tji
Cip roll damping of the body
CF dihedral torque on the canard frame due to fin
ﬁ 288 o
deflection .4
C%AAB body rolling moment due to cant angle :
[
* The computation alsoc evaluates the dynamic pressure: -
| q = 1482.82M°) (1lbs/ft?)
These terms are evaluated in Module 57110 presented in Figure A-8. _
1
A.5.2 AERODYNAMIC FORCES MOMENTS (Module No. 68080) -

Module Number 69050 evaluates the dimensional forces and
moments which act'on the projectile. An additional aerodynamic
term is required beyond those included in Module Number 57110 and

this is added using Module Number 8130, Module 82050 is illustrated
in Figure A-8.

*A-16
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A.6 CONTROLLED SPINNING PROJECTILE (Module 69060)

Module 69060 simulates the seven degrees-of-fireedom of a
controlled spinning projectile in a manner which is consistent with
the theory derived in Section 3 of the main body of this volume,

The coordinate frame for the module ix made to correspond to
the pseudo-stability axes by setting p = [88060,3,5] equal to zero.
_ The module accepts wind components relative to the inertial coordin=-
I ate frame and it computes the projJectiles motion relative to the
' inertial coordinate frame,

Attention should be called to the sign conventions for wind.

i The wind components have been taken as positive when they are in

the direction of the negative coordinate axes. This permitas the .

total relative wind components to be written am u+u., V+v,, ww_ . © ]
consistent with equations 3-21,

v 1ﬁ—‘~.‘—
4
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b A.7 7-DOF PROJECTILE INCL E (Module 69220)

Module 69220 embodies the seven degree-of-freedom simulation of
Module $39060. In addition, it includes the following features:

(1) It computes the relative position of the target and
projectile in the inertial coordinate frame.

(2) The relative position is resolved onto the aero-
ballistic coordinate frame and look-angle components
are evaluated.

(3) The angle, ¢F’ between the fin-frame and the bady
is evaluated.

(4) The angle, ¢F’ is used to resolve the canard deflec-
tion in the canard frame, 65, onto the aeroballistic *
frame and the look-angle components onto the fin-

frame.

PGy W A R
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